Законом Кулона описывается взаимодействие заряженных частиц. Однако большинство сил, с которыми мы работали, возникает при взаимодействии тел посредством контакта (т.е. тела касаются друг друга). В случае электромагнитного взаимодействия контакта нет, тогда взаимодействие происходит посредством неких невидимых элементов. Тогда взаимодействия между частицами вещества и удалёнными друг от друга макроскопическими телами осуществляются через посредство физических полей, которые создаются этими частицами или телами в окружающем пространстве. В случае с заряженными частицами, эти поля назовём электромагнитными.
Тогда логика электромагнитного взаимодействия такова: заряд создаёт вокруг себя электромагнитное поле, которое, в свою очередь, действует на любой другой заряд , находящийся на любом расстоянии от источника.
Закон Кулона описывает взаимодействие между двумя зарядами:
(1)
- где
- , — модули взаимодействующих зарядов,
- — расстояние между центрами взаимодействующих зарядов,
- Н*м/Кл — постоянная.
Сила (1) зависит от обоих зарядов, что не позволяет толком описать электрическое поле, создаваемое каждым из взаимодействующих частиц. Тогда придумаем немного другую систему: возьмём пробный заряд — некий малый заряд, который не будет искажать поле исследуемого нами заряда . Поместим пробный заряд в различные точки пространства рядом с исследуемым нами зарядом и проиллюстрируем силы Кулона (рис. 1).
В принципе, значение силы Кулона можно найти в любой точке пространства, однако данные силы зависят как от заряда источника, так и от значения пробного заряда. Введём новую переменную, поделив значение силы Кулона на значение пробного заряда:
(2)
- где
- — вектор напряжённости электрического поля.
Подставим силу Кулона в (1):
(3)
Исходя из (3), можно заключить, что напряжённость электрического поля зависит от заряда источника поля и точки наблюдения, описываемой расстоянием от заряда (рис. 2).
Т.е. напряжённость электрического поля — параметр, описывающий поле, создаваемое зарядом-источником. Значение напряжённости электрического поля позволяет оценить сильно или слабо будет действовать поле на заряд, помещённый в него. Размерность — В/м.
Исходя из (3), можно найти напряжённость поля точечного заряда. Напряжённость электрического поля — величина векторная, поэтому для её нахождения необходимо знать как модуль, так и направление вектора. Начнём с модуля:
(4)
Чтобы выяснить направление вектора, воспользуемся уравнением (2). Исходя из (2), можно заключить, что направление напряжённости электрического поля совпадает с направлением силы Кулона, а направление силы Кулона зависит от знака взаимодействующих зарядов. Чтобы не заморачиваться с рассмотрением этих зарядов в каждой задаче, просто договоримся. Если источник поля (заряд) положителен, тогда напряжённость поля направлена от заряда, если источник поля (заряд) отрицателен, тогда напряжённость поля направлена к заряду (рис. 3).
Напряжённость системы зарядов. Принцип суперпозиции напряжённости.
В случае, если в задаче источниками поля являются несколько зарядов, тогда напряжённость в интересующей точке можно найти как векторную сумму напряжённостей от каждого из зарядов:
(5)
- где
- — общая (суммарная) напряжённость в точке,
- — напряжённость в точке от каждого из зарядов.
Важно: поиск векторной суммы чаще всего сопряжён с реализацией теоремы Пифагора, теоремы косинусов или синусов, иногда с проецированиием векторов напряжённости на оси с последующим суммированием.
Проиллюстрируем: пусть в системе присутствует 3 заряда (, , ), найти напряжённость в точке А, находящейся на заданном расстоянии от каждого из них (, , ) (рис. 4).
Пользуясь знаниями о зарядах, расставляем направления напряжённостей от каждого из зарядов, значение модуля каждой из них можем найти из (4). А далее геометрически складываем, получая искомый .
Напряжённость поля бесконечной заряженной плоскости.
Отдельно в школьной физике рассматривается бесконечная (осень большая) заряженная равномерно плоскость (рис. 5).
Напряжённость такой плоскости вблизи её:
(6)
- где
- — поверхностная плотность заряда,
- — диэлектрическая проницаемость среды (табличная величина),
- Ф/м — электрическая постоянная
В (6) использовалось определение поверхностной плотности заряда:
(7)
- где
- — полный заряд плоскости,
- — площадь поверхности плоскости.
Важно: напряжённость бесконечной плоскости не зависит от расстояния от плоскости.
Напряжённость поля двух бесконечных заряженных плоскостей (конденсатор).
Если составить систему из двух бесконечных плоскостей, заряженных одинаковым по модулю и различным по знаку зарядом (при этом площади плоскостей одинаковы), то общая напряжённость между ними:
(8)
Уравнение (8) характеризует напряжённость внутри конденсатора (рис. 6).
Вывод: в случае, если в задаче требуется найти напряжённость, она дана, достаточно рассмотреть систему. Различных систем, а соответственно, и формул, немного: точечный заряд, шар, система точечных зарядов и бесконечные плоскости. Для каждой системы — своё решение.