Источники магнитного поля

В школьной физике в качестве источников магнитного поля рассматриваются постоянные магниты и проводники с током. Если постоянные магниты мы уже рассмотрели, то с проводниками давайте разберёмся в данном разделе. Простейшие формы проводников для расчёта магнитных полей:

  • бесконечный прямолинейный проводник с током
  • круговой виток с током (проводник в форме окружности)

Для каждого из этих проводников можно рассчитать напряжённость магнитного поля в точке.

Итак, движущийся заряд создаёт вокруг себя магнитное поле. Самый простой тип движущегося заряда — это обычный электрический ток. Вопрос только в том, как согнуть проводник:

  • бесконечный прямолинейный проводник с током
Магнитное поле бесконечного проводника

Рис. 1. Магнитное поле бесконечного проводника

Итак, возьмём бесконечный прямолинейный проводник с током. Слово «бесконечный» в данном случае небольшое приближение. Так для любой точки, находящейся непосредственно вблизи любого линейного проводника, сам проводник «кажется» бесконечным. Пусть по нашему проводнику течёт ток \displaystyle I (рис. 1). Прямолинейный проводник с током создаёт вихревое (круговое) магнитное поле вокруг себя. Направление вектора магнитной индукции задаётся правилом буравчика (правилом правой руки). Исходя из этого правила, найдём направление вектора (рис. 2).

Магнитное поле бесконечного проводника (магнитная индукция)

Рис. 2. Магнитное поле бесконечного проводника (магнитная индукция)

Для подсчёта модуля вектора магнитной индукции поля вне прямолинейного бесконечного проводника с током можно использовать соотношение (рис. 3):

\displaystyle B=\mu {{\mu }_{0}}\frac{I}{2\pi R} (1)

  • где
    • \displaystyle \mu — относительная магнитная проницаемость среды,
    • \displaystyle {{\mu }_{0}}\approx 1,26*{{10}^{-6}} м*кг*\displaystyle {{c}^{-2}}*\displaystyle {{A}^{-2}},
    • \displaystyle I — сила тока, текущего по проводнику,
    • \displaystyle \pi \approx 3,1416 — константа,
    • \displaystyle R — расстояние от центра проводника до точки наблюдения.
Модуль вектора магнитной индукции бесконечного линейного проводника

Рис. 3. Модуль вектора магнитной индукции бесконечного линейного проводника

3D модели рисунков достаточно сложны для рассмотрения, поэтому введены условные обозначения для направлений векторов/токов в трёхмерном пространстве (рис. 4).

Схематические отображения векторов

Рис. 4. Схематические отображения векторов

Тогда перерисуем рисунок 3, в случае, если мы смотрим сверху провода (рис. 5.1). В этом случае ток течёт на нас, т.е. из рисунка. И в случае, когда мы смотрим на провод снизу вверх (рис. 5.2). В этом случае ток течёт от нас, т.е. внутрь рисунка.

Поле проводника (вид сверху)

Рис. 5. Поле проводника (вид сверху)

На рисунке 5 точечной линией обозначено магнитное поле прямолинейного тока (оно круговое). Направление вектора магнитной индукции (\displaystyle \vec{B}) определяется правилом буравчика (правилом правой руки).

Правило буравчика для прямолинейного тока: правой рукой обхватываем проводник с током, отогнутый большой палец сонаправляем с током, тогда согнутые 4 пальца показывают направление вектора магнитной индукции.

  • круговой виток с током (проводник в форме окружности)

Второй вариант системы, в которой достаточно просто рассчитать модуль вектора магнитной индукции, — это круговой виток с током. Т.е. сам проводник с током представляет собой окружность. По данному проводнику ток может течь как по часовой стрелке (рис. 6.1), так и против часовой (рис. 6.2).

Круговой виток с током

Рис. 6. Круговой виток с током

В целом, магнитное поле такого проводника достаточно сложное, однако для центра витка нахождение модуля вектора магнитной индукции не представляет проблем:

\displaystyle B=\mu {{\mu }_{0}}\frac{I}{2R} (2)

  • где
    • \displaystyle \mu — относительная магнитная проницаемость среды,
    • \displaystyle {{\mu }_{0}}\approx 1,26*{{10}^{-6}} м*кг*\displaystyle {{c}^{-2}}*\displaystyle {{A}^{-2}},
    • \displaystyle I — сила тока, текущего по проводнику,
    • \displaystyle R — расстояние от центра проводника до точки наблюдения.

Немного о \displaystyle \mu — относительной магнитной проницаемости среды. Это параметр, который описывает насколько сама среда воспринимает магнитное поле источника. В целом, это табличная величина.

Правило буравчика для кругового тока: обнимаем правой рукой провод, большой отогнутый палец правой руки направляем по току, тогда загнутые 4 пальца будут указывать направление вектора магнитной индукции.

Важно: для наших систем можно запомнить, что прямолинейный ток создаёт круговое магнитное поле (рис.5), а круговой ток создаёт прямолинейное магнитное поле (рис.6).

Вывод: для поиска модуля вектора магнитной индукции достаточно проанализировать систему в задаче и описать её через модель бесконечного прямолинейного или кругового проводника с током.

Добавить комментарий